<u>Nieorganiczna baza danych</u> (ICSD)

Podstawowa instrukcja obsługi

<u>Opracowała</u>: mgr Sylwia Radwan Wydział Chemii Uniwersytetu Wrocławskiego Zakład Krystalografii

Wrocław 2018

Spis treści

INFORMACJE PODSTAWOWE	. 2
WYSZUKIWANIE Z WYKORZYSTANIEM SKŁADU CHEMICZNEGO	. 4
COMBINED QUERIES – ŁĄCZENIE ZAPYTAŃ	. 6
ANALIZA WYNIKÓW WYSZUKIWANIA I ZAPISYWANIE DANYCH	. 7
PRZYKŁADY	. 8

INFORMACJE PODSTAWOWE

Dane krystalograficzne są istotnym elementem wielu rozważań naukowych. Ich niezastąpionym źródłem są krystalograficzne bazy danych, w których deponuje się struktury krystaliczne po ich rozwiązaniu i udokładnieniu. Jedną z najpopularniejszych baz danych jest baza **ICSD** (*Inorganic Crystal Structure Database*), która zawiera obecnie¹ około 193.000 nieorganicznych struktur krystalicznych. Co ciekawe, najstarsze rekordy zdeponowane w ICSD pochodzą z 1913 roku; są to struktury krystaliczne diamentu i chlorku sodu, które rozwiązał W. H. Bragg wraz z synem.

Bazę ICSD uruchamia się poprzez dwukrotne kliknięcie na ikonę 💐. Nowością w obecnej wersji baziy danych jest to, że nowa ICSD **otwiera się w przeglądarce internetowej**.

Po uruchomieniu bazy danych następuje automatyczne przekierowanie do głównego ekranu wyszukiwania (*zdjęcie 1*, zaprezentowany poniżej). Po wskazaniu kursorem dowolnego (białego) wiersza, wyświetlają się szczegółowe informacje dotyczące poszczególnych opcji wyszukiwania. W trakcie pracy na bieżąco zapisuje się historia wyszukiwań (*Query History* po prawej stronie ekranu, *zdjęcie 1*).

Przed rozpoczęciem właściwego wyszukiwania należy wybrać podstawowy (*Basic Search & Retrieve*) lub zaawansowany (*Advanced Search & Retrieve*) tryb pracy, a także zaznaczyć czy przeprowadzane wyszukiwanie dotyczy struktur otrzymanych eksperymentalnie (*Experimental*), teoretycznie (*Theoretical*) czy obu tych grup jednocześnie (*All Structures*). Wersja zaawansowana jest oczywiście rozszerzeniem wersji podstawowej, zawierającym wiele dodatkowych kryteriów wyszukiwania (np. stopnie utlenienia, odległości międzyatomowe i wiele innych). Tryb wyszukiwania można zmienić w każdej chwili, należy jednak pamiętać, że **przejście z wersji podstawowej do zaawansowanej zachowuje w pamięci wyszukiwania dane uprzednio wprowadzone w wersji podstawowej**. Przykładowo, jeżeli początkowo wyszukiwano struktury zdeponowane w 2016 roku w wersji *Basic*, a następnie zamieniono wersję wyszukiwania na *Advanced* bez usunięcia poprzednich danych, nowe wyszukiwanie w trybie zaawansowanym uwzględni struktury wyłącznie z 2016 roku, nawet w przypadku wprowadzenia nowych parametrów. **Uwaga! Przy przejściu odwrotnym** (z wersji *Advanced* do *Basic*) **wprowadzone dane nie zostają zapamiętane** (co jest sygnalizowane odpowiednim komunikatem), **a zatem ich usunięcie nie jest wymagane przed zmianą trybu na** *Basic***. Możliwe jest również łączenie kilku różnych zapytań, nawet takich, które przeprowadzono w dwóch różnych trybach (część** *Combined Queries,* **strona 6).**

Nieorganiczna baza danych ma pewne ograniczenia. W ICSD **dopuszczalne są tylko takie wyszukania, których wynik nie przekracza 10000 pozycji**. W przypadku zbyt szerokiego zakresu wyszukiwań (dla którego wynik zawiera więcej niż 10000 pozycji), baza danych automatycznie zablokuje wyszukiwanie. W takim przypadku konieczne jest zawężenie obszaru poszukiwań. ICSD nie rozpoznaje znaków diakrytycznych i nie rozróżnia małych i dużych liter. Zamiast "ą" należy zatem wprowadzić "a", zamiast "ć" – "c". Dla pozostałych polskich liter postępuje się analogicznie.

¹ Stan na styczeń 2018 r.

Nieorganiczna baza danych (ICSD) – podstawowa instrukcja obsługi

Home Contact		Wele	come to ICSD-Desktop	b .			
Content Selection	Basic Search &	Retrieve			i	Search Action	
Experimental Structures only	Bibliography					Run Query Clea	r Que
Theoretical Structures only	Authors			Year of Publication		Search Summary	
All Structures	Title of Journal					Basic Search:	
Navigation	nue or oodinur			_		Query History	
Basic search & retrieve	Title of Article					Number of queries:	
Advanced search & retrieve	Chemistry				$\sqrt{2}$	Clear Ouery Histo	rv
Bibliography	Composition		P	Number of			· /
Cell			\cup	Elementa			
Chemistry	Cell			-			
Symmetry	Cell Parameters						
Crystal Chemistry	Cell Volume			Tolerance +/-	%		
Structure Type	Symmetry						
Experimental Information	Space Group		Space Group				
DB Info	Symbol		Number				
Query Management	Crystal System		 Centering 		-		
Manage Queries	•		oononig				
List Combined Queries	Exp. Info. & Ref. D	Data					
Create Combined Query	New Data Only						
	PDF Number		Temperature		к 🝷		
	ICSD Collection		1				
	Code		Pressure	М	Pa 🔹		

Legal Notices | Copyright © FIZ Karlsruhe 2018

Zdjęcie 1. Startowy ekran wyszukiwania w bazie danych ICSD. Kreskowaną ramką zaznaczono opcje umożliwiające wybór wyszukiwanych struktur (eksperymentalne/teoretyczne), jak również dwa tryby wyszukiwania: podstawowy oraz zaawansowany. Kropkowana ramka zakreśla opcje umożliwiające zarządzanie zapytaniami łączonymi. Czarna strzałka wskazuje na wiersz umożliwiający wyszukiwanie struktur z wykorzystaniem ich składu chemicznego, a strzałka biała – obszar, w którym deklaruje się ilość pierwiastków w składzie chemicznym związku. Narzędzie lupy, oznaczone czarnym okręgiem, pozwala na otwarcie okna z układem okresowym (opis w tekście poniżej).

WYSZUKIWANIE Z WYKORZYSTANIEM SKŁADU CHEMICZNEGO

Uwaga! Poniższy opis dotyczy struktur eksperymentalnych wyszukiwanych w trybie podstawowym (Basic). Wyszukiwanie struktur teoretycznych/w trybie zaawansowanym przeprowadza się analogicznie.

Podstawowym sposobem pracy z ICSD jest wyszukiwanie struktur krystalicznych z wykorzystaniem składu chemicznego badanego związku. Na *zdjęciu 1* czarną strzałką oznaczono wiersz, w którym należy wpisać (rozdzielając spacją) symbole chemiczne pierwiastków obecnych w wyszukiwanym związku (wiersz *Composition*). Jak wspomniano wcześniej w części **INFORMACJE PODSTAWOWE**, baza danych nie rozróżnia małych i dużych liter; symbol pierwiastka można wpisać małymi lub dużymi literami. Wyszukiwanie rozpoczyna się kliknięciem w pole *Run Query* (umieszczone po prawej stronie ekranu) lub wciśnięciem przycisku enter na klawiaturze.

Obok pola *Composition* umieszczono funkcję *Number of Elements* (biała strzałka na *zdjęciu* 1), która umożliwia sprecyzowanie ile różnych pierwiastków dopuszcza się w poszukiwanym związku podczas wyszukiwania. Funkcja *Number of Elements* pozwala zatem na zawężenie obszaru poszukiwań do związków dwu-, trójpierwiastkowych itd., a także proste zablokowanie wyszukiwania niepożądanych pierwiastków (*PRZYKŁAD* 1). W polu *Number of Elements* można wprowadzić również zakresy wyszukiwania (np. <2 – poniżej dwóch pierwiastków, <=2 – mniej lub równo dwa pierwiastki, >2 więcej niż dwa pierwiastki i tak dalej; *PRZYKŁAD* 2).

Baza danych umożliwia odrzucenie pojedynczych lub całych grup pierwiastków z obszaru wyszukiwania (symbol "-" przed nazwą pierwiastka lub grupy bez spacji pomiędzy minusem, a symbolem pierwiastka; *PRZYKŁAD 3*). Uwaga! Wskazanie więcej niż jednego niepożądanego pierwiastka (lub grupy) wymaga użycia kolejnych "-" (np. La Co –BEG² –O, zamiast La Co –BEG O). W trakcie wyszukiwania możliwe jest również użycie funkcji OR [symbol "()"], która umożliwia wyszukanie związków zawierających jednocześnie oba wskazane związki, ale również związki tych pierwiastków oddzielnie (*PRZYKŁAD 4*).

Istnieje również możliwość wprowadzenia symboli pierwiastków bezpośrednio z układu okresowego; kliknięcie na "lupę" umieszczoną obok wiersza *Composition* (oznaczoną okręgiem na *zdjęciu 1*) otwiera okno z układem okresowym (*zdjęcie 2a*). Strzałki widoczne na *zdjęciu 2a* umożliwiają zaznaczenie całych grup lub okresów obecnych w układzie okresowym, a także grupy: metali, niemetali oraz metali przejściowych. We wspomnianym oknie można również dodać/wykluczyć pewnie grupy pierwiastków (lub pojedyncze pierwiastki), bez konieczności ręcznego wpisywania komend w polu *Composition* (funkcje AND oraz NOT pojawiające się pod układem okresowym dopiero po kliknięciu w dowolną strzałkę/pierwiastek lub wpisaniu symbolu pierwiastka w polu *Composition*, *zdjęcie 2b*), a także zdefiniować stopień utlenienia wyszukiwanych pierwiastków (pole *Ox*).

²Symbol BEG oznacza grupę berylowców. Symbole poszczególnych grup (lub okresów) można poznać zaznaczając je w układzie okresowym.

Nieorganiczna baza danych (ICSD) – podstawowa instrukcja obsługi

Search Chemistry Visual Search mode											×								
	Ļ	Ļ																Ļ	
\rightarrow	Н												Ļ	Ļ	Ļ	Ļ	Ļ	He	
\rightarrow	Li	Be											В	С	Ν	0	F	Ne	
\rightarrow	Na	Mg	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Al	Si	Р	S	CI	Ar	
\rightarrow	K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
\rightarrow	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Хе	
\rightarrow	Cs	Ва		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
\rightarrow	Fr	Ra		Rf	Db														
			\rightarrow	La	Се										Er		Yb		
			\rightarrow	Ac				Np							Fm				
	\rightarrow	Metal	s				→ 7	Transiti	ion Me	tals					→ No	n-Met	als		
					(Click	on ele	ment o	or sele	ect per	iod and	d/or gi	oup.						
	Re	estrict	total r	numbe	er of e	lemer	its to s	electe	ed num	ber of	eleme	nts							
								OK		Canc	al								
								UK		CallO	er								

Zdjęcie 2a. Układ okresowy zamieszczony w ICSD.

Zdjęcie 2b. Funkcje AND oraz NOT, umożliwiające wykluczenie bądź dodanie wybranych pierwiastków (lub całych grup/okresów) do składu chemicznego wyszukiwanego związku, bez konieczności wpisywania ręcznego w polu *Composition*.

W ICSD możliwe są również wyszukiwania pomijające skład pierwiastkowy związku. Wybraną strukturę krystaliczną można znaleźć w bazie danych wpisując np.: nazwiska autorów, rok publikacji, parametry komórki sieciowej lub numer identyfikacyjny danej struktury. Oczywiście, można łączyć ze sobą różne parametry wyszukiwania (np. struktury krystaliczne związków lantanu, ale zdeponowane wyłącznie w 2013 roku lub struktury tlenków azotu opublikowane jedynie przez przez wybranego autora itd.). Jak wspomniano wcześniej, szczegóły dotyczące każdej funkcji można uzyskać poprzez wskazanie kursorem interesującego nas pola.

COMBINED QUERIES – ŁĄCZENIE ZAPYTAŃ

Nieorganiczna baza danych umożliwia łączenie kilku różnych zapytań/wyników wyszukiwań o odmiennych parametrach w jedno (funkcja *Combined Queries*, zaznaczona na *zdjęciu 1* kropkowaną ramką), dając dodatkową możliwość odrzucenia pewnych wyników, których nie można zablokować na poziomie prostego wyszukiwania. Warto zaznaczyć, iż funkcja *Combined Queries* pozwala na łączenie wyników wyszukiwań wykonanych w trybach *Basic* i *Advanced*. Łączone zapytania można utworzyć w oknie *Create Combined Query* (*zdjęcie 3*), dodając jednocześnie nazwę i komentarz (pola *Name* oraz *Comment*).

Create Combined Q	uery						- 70
Name:							
Comment:	-						
Available Queries:		Query Name 🗘	Date 🗘	Query Type \$	# of hits ≎	Saved \$	
	1	2018-01-18T12:54	2018-01-18T12:54	Basic	2		-
		2018-01-18T12:49	2018-01-18T12:49	Basic	20		
		2018-01-18T12:46	2018-01-18T12:46	Basic	6		
		2018-01-18T11:55	2018-01-18T11:55	Basic	7572		
		2018-01-17T23:59	2018-01-17T23:59	Basic	30		
		2018-01-17T23:56	2018-01-17T23:56	Basic	2391		
Must have (AND):							
+ -	No	records found.					
Must have at least							
one of (OR):	No	records found.					
(NOT):							
+ -	No	records found.					

Zdjęcie 3. Okno umożliwiające tworzenie zapytań łączonych.

Przygotowanie wyszukiwania łączonego jest proste; wystarczy wybrać z listy (widocznej na *zdjęciu 3* u góry ekranu) interesujące nas wyniki wyszukiwań i połączyć je klikając na symbol "+". Zaznaczenie można cofnąć, klikając "-". Istnieją trzy funkcje dla wyszukiwań łączonych: must have, *must have at least one of* i *must not have*. Umieszczenie wybranych wyników wyszukiwań (przykładowo oznaczonych jako A oraz B) w polu *must have* spowoduje, że wśród wyników ich wyszukiwania łączonego muszą znaleźć się elementy wspólne dla A i B.

Pole *must not have* pozwala na odrzucenie wszystkich elementów pochodzących z wyszukiwania umieszczonego w tym polu. Przykładowo, jeżeli umieścimy wyszukiwania C i D w polu *must have*, a wyszukiwanie E w kategorii *must not have*, to otrzymane wyniki będą zawierać w sobie wyłącznie elementy pochodzące z sumy C i D. <u>Elementy wspólne dla C i E oraz D i E zostaną całkowicie wykluczone</u> z przeprowadzonego wyszukiwania.

Pole *must have at least one of* umożliwia utworzenie takiego wyszukiwania łączonego, którego wynik musi zawierać elementy pochodzące przynajmniej z jednego elementu wyszukiwania. Przykładowo, *Combined Query* stworzone z wyszukiwań F i G umieszczonych w polu *must have at least one of* da wynik składający się z <u>elementów pochodzących wyłącznie z F i wyłącznie z G (oddzielnie), a także ich elementów</u> <u>wspólnych.</u>

ANALIZA WYNIKÓW WYSZUKIWANIA I ZAPISYWANIE DANYCH

Po zakończeniu wyszukiwania jego wynik wyświetla się w formie przejrzystej listy, zawierającej najważniejsze informacje dotyczące znalezionych struktur krystalicznych: numer identyfikacyjny, nazwiska autorów, odniesienie do publikacji, wzór sumaryczny, grupę przestrzenną, w której krystalizuje dany związek, a także typ struktury krystalicznej (*zdjęcie 4*).

Res	ults: List Vie	w						# (of Hits:	: 2 🚺
Sel	ect All De	lect All		Show D	Detailed View	Show Synoptic View	Export Selected Da	ta	Back to	o Query
\frown	Coll. Code	HMS	Struct.	Form.	Struct. Type	Title	Authors	Reference	₽ •	
	53779	Fd-3mS	С		Diamond- C(cF8)	Structure of some crystals	Hull, W.H.; Bragg, W.L.	Proceedings of the Roya Society of London, Series A: Mathematical and Physical Sciences (76,1906-) (1913) 33, (*) p277-p277	I	
V	53815	F m -3 m	Na Cl		NaCl	Structure of some crystals	Bragg, W.H.; Bragg, W.L.	Proceedings of the Roya Society of London, Series A: Mathematical and Physical Sciences (76,1906-) (1913) 88, (*) p428-p428	I	

Zdjęcie 4. Przykładowy wynik wyszukiwania. Biała strzałka wskazuje na narzędzie umożliwiające sortowanie wyników.

Otrzymane wyniki można posegregować rosnąco lub malejąco; wystarczy kliknąć na nazwę parametru, według którego musi odbyć się segregacja, a następnie na mały trójkąt, który pojawi się przy nazwie parametru bezpośrednio po kliknięciu (zaznaczony na zdjęciu 4 strzałką). Gwiazdki umieszczone przy danej pozycji wyróżniają dane krystalograficzne wysokiej jakości. Szczegóły danej struktury krystalicznej można rozwinąć klikając w pole Show Detailed View po jej zaznaczeniu z lewej strony ekranu (czarny okrąg na zdjęciu 4). W ICSD dopuszcza się również wyodrębnienie poszczególnych wyników spośród innych, poprzez ich zaznaczenie i użycie funkcji Show Synoptic View. Po użyciu funkcji Show Synoptic View możliwe jest również zapoznanie się z symulowanymi dyfraktogramami proszkowymi wyszczególnionych struktur (Display Powder Patterns) i przestrzenna wizualizacja tych struktur (Display Crystal Structures). Pobranie pliku w formacie .cif jest możliwe poprzez kliknięcie w ikonę dyskietki znajdującej się po prawej stronie tabeli. Zapisanie plików w innych formatach (.txt, .csv, .xls) zarówno dla jednej, jak i wielu pozycji jest możliwe po zaznaczeniu wybranych struktur krystalicznych, a następnie użycie funkcji Export Selected Data, umieszczonej bezpośrednio nad tabelą z wynikami wyszukiwania. Istnieje również możliwość zapisania dyfraktogramów proszkowych wyszukanych struktur – kliknięcie na pole Export as x-y data albo Export as table (znajdujące się bezpośrednio pod dyfraktogramami proszkowymi) umożliwia ich zapisanie w wybranym przez nas formacie.

PRZYKŁADY

Uwaga! Opisywane poniżej przykłady dotyczą struktur wyłącznie eksperymentalnych, wyszukiwanych w trybie podstawowym (Basic).

PRZYKŁAD 1

Obszar zainteresowania: struktury krystaliczne lantanu.

Po wpisaniu komendy **La** (lantan) w pole *Composition* pojawia się komunikat o przekroczeniu dopuszczalnej ilości wyszukanych struktur krystalicznych (wśród otrzymanych wyników znalazły się struktury krystaliczne samego lantanu, ale również jego licznych związków). Dopiero zawężenie obszaru wyszukiwania do struktur jednopierwiastkowych (poprzez wpisanie **1** w polu *Number of Elements*) umożliwia wyszukanie struktur krystalicznych samego lantanu, bez jego związków.

PRZYKŁAD 2

<u>Obszar zainteresowania</u>: struktury krystaliczne związków lantanu zawierających <u>co najmniej</u> cztery różne pierwiastki chemiczne w swoim składzie.

Po wpisaniu komendy La w pole *Composition* oraz **4** w pole *Number of Elements*, wyszukane zostają wyłącznie czteropierwiastkowe związki lantanu. Dopiero po zmianie komendy **4** na >=**4** w polu *Number of Elements*, wśród znalezionych rekordów znajdują się struktury krystaliczne związków lantanu zawierających cztery i więcej różnych pierwiastków w swojej strukturze.

PRZYKŁAD 3

<u>Obszar zainteresowania</u>: trójpierwiastkowe struktury krystaliczne związków zawierających lantan i kobalt (jednocześnie) z wyłączeniem grupy berylowców.

Po wpisaniu komendy **La Co** (lantan i kobalt) w pole *Composition* oraz **3** w pole *Number of Elements* wyszukane zostają wszystkie trójpierwiastkowe związki zawierające jednocześnie lantan i kobalt, a także inne pierwiastki (w tym berylowce). Dopiero po użyciu komendy **La Co –BEG** (<u>koniecznie</u> bez spacji po minusie) wśród wyszukanych struktur nie ma związków zawierających berylowce.

PRZYKŁAD 4

<u>Obszar zainteresowania</u>: struktury krystaliczne trójpierwiastkowych związków lantanu <u>lub</u> kobaltu oraz lantanu i kobaltu (w jednym związku).

Po wpisaniu komendy **(La Co)** w pole *Composition* oraz **3** w pole *Number of Elements* otrzymano wszystkie struktury krystaliczne trójpierwiastkowych związków lantanu <u>lub</u> kobaltu z innymi pierwiastkami, a także związki zawierające jednocześnie zarówno lantan, jak i kobalt w swoim składzie.